Nonlinear Modelling of Fast Ion Driven Instabilities in Fusion Plasmas

SD Pinches ITER Organization

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

Outline of Talk

- Introduction to fast ions and fast ion driven modes
- Overview of the HAGIS code
- Nonlinear modelling of fast ion driven instabilities
 - Growth and saturation
 - Multiple modes interacting
 - Pitchfork splitting
 - Frequency sweeping modes
 - Fishbones
 - Tornado modes
- Summary

ITER Mission

- The overall programmatic objective:
 - to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes
- The principal goal:
 - to design, construct and operate a tokamak experiment at a scale which satisfies this objective
- ITER is designed to confine a Deuterium-Tritium plasma in which α-particle heating dominates all other forms of plasma heating:

\Rightarrow a burning plasma experiment

ITER Mission

Physics:

- Produce a significant fusion power amplification factor (Q ≥ 10) in long-pulse operation (300 – 500 s)
- Aim to achieve steady-state operation of a tokamak ($Q \ge 5$, ≤ 3000 s)
- Retain the possibility of exploring 'controlled ignition' ($Q \ge 30$)

Technology:

- Demonstrate integrated operation of technologies for a fusion power plant
- Test components required for a fusion power plant
- Test concepts for a tritium breeding module

Burning plasma physics in ITER

- Access to plasmas which are dominated by α -particle heating will open up new areas of fusion physics research, in particular:
 - confinement of α -particles in plasma
 - response of plasma to α -heating
 - influence of α -particles on stability

 Experiments in existing tokamaks have already provided some positive evidence

- 'energetic particles' (including α -particles) are well confined in the plasma
- 'energetic particle' populations interact with the background plasma and transfer their energy as predicted by theory
- but 'energetic particles' can drive instabilities (Alfvén eigenmodes) for ITER parameters at Q=10, the impact is predicted to be tolerable

ITER Baseline Reference Scenarios

 The set of DT reference scenarios in ITER is specified via illustrative cases in the *Project Requirements* ⇒ Design Basis scenarios

Parameter	Inductive Operation	Hybrid Operation	Non-inductive Operation	
Plasma Current, I _p (MA)	15	13.8	9	
Safety Factor, q ₉₅	3.0	3.3	5.3	
Confinement Time, τ_{E} (s)	3.4	2.7	3.1	
Fusion Power, P _{fus} (MW)	500	400	360	
Power Multiplication, Q	10	5.4	6	
Burn time (s)	300 – 500	1000	3000	

In addition, a range of non-active (H, He) and D plasma scenarios must be supported for commissioning purposes to support rapid transition to DT operation

Alpha-particle heating at Q = 10

- As the alpha power rises in high-Q plasmas, the plasma will enter a novel regime
 - Plasma behaviour dominated by α-particle heating
 - \Rightarrow Burning plasma regime

Sources of Energetic Particles

- Nuclear fusion
 - Isotropic slowing-down distribution
 - For DT fusion, α -particle birth energy of 3.5 MeV
- Neutral beam injection (NBI)
 - Anisotropic slowing-down distribution
 - Well defined E_b
- Radio Frequency (RF)
 - E.g. Ion Cyclotron (ICRH)
 - No well defined characteristic energy
 - Anisotropic

ITER Heating and Current Drive Systems

NB	IC	EC	LH				
Neutral Beam -1 MeV	Ion Cyclotron 40 – 55 MHz	Electron Cyclotron 170 GHz	Lower Hybrid ~5 GHz				
		Waveguide Waveguide Very for the bends Co-direction Co-direction Counter Count	High power water load PAM PAM BAB A B coupler BAB A B COUPLER				
33MW* +16 5M\\/#	20MW* +20M\\/#	20MW* +20M\\/#	0MW* +4∩M/\//#				
Bulk current drive limited modulation	Sawtooth control modulation < 1 kHz	NTM/sawtooth control modulation up to 5 kHz	Off-axis bulk current drive				
*Baseline Power #Possible Upgrade							

© 2014, ITER Organization 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Fast Ion Orbits

Burning Plasmas

- New physics element in burning plasmas:
 - Plasma is self-heated by fusion alpha particles

Alfvén waves and as

Loss of Fast Particles

- Loss of bulk plasma heating
 - Clearly unacceptable for an efficient power plant
- Damage to first wall
 - Can only tolerate losses of a few % in a reactor

© 2014, ITER Organization 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Reasons for Loss

- Imperfections in confining magnetic field
 - Ripple due to finite number of field coils, TBMs, ELM coils

48 superconducting coils

System	Energy GJ	Peak Field	Total MAT	Cond length km	Total weight t
Toroidal Field TF	41	11.8	164	82.2	6540
Central Solenoid	6.4	13.0	147	35.6	974
Poloidal Field PF	4	6.0	58.2	61.4	2163
Correction Coils CC	-	4.2	3.6	8.2	85

- Self-generated field imperfections
 - Collective instabilities

Wave Induced Losses in TFTR

- Specially designed experiments
 - Low field, $B_t = 1 T$
 - Deuterium NBI, $E_b(_0D^2) = 100 \text{ keV}$
 - $V_b \sim V_A$
- Modes observed for P_{NBI} > 5 MW

- Correlated with neutron reduction
 - Neutron yield dominated by beam-plasma reactions
 ⇒ Fast ion loss

K.L. Wong et al., Phys. Rev. Lett. 66 (1991)

Alfvén Waves

Analogous to waves on a string

$$- v_A = B/\sqrt{(\mu_0 m_i n_i)}$$

$$-\omega^2 = \omega_A^2(r) \equiv k_{\parallel}^2 v_A^2(r)$$

- Form continuum of waves in inhomogeneous plasma
- Damped due to phase mixing with neighbouring waves

Alfvén Waves and Eigenmodes

- Current carrying inhomogeneous cylinder:
 - Helical field

- Continuum has extremum
- Global Alfvén Eigenmode $-k_{||} = k_{||}(r)$ (GAE) ξ_r ω^2 $\omega^2 = k_{||}^2 v_A^2$ ω_0^2 0 0 $r = r_0$ $r = r_0$ rr
- K. Appert et al., Plasma Phys. 24 (1982), D. W. Ross et al., Phys. Fluids 25 (1982)

Page 17

© 2014, ITER Organization 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Alfvén Waves in Tori

- Tokamak plasma:
 - Fourier decomposition:
 - A ~ exp[i(nφ mθ ωt)]
 - $B \approx B_0 R_0 / R \approx B_0 (1 r/R_0 \cos \theta)$
 - Neighbouring poloidal harmonics couple due to toroidicity
 - Gaps in frequency continuum
 - Toroidal Alfvén Eigenmodes (TAE) exist in frequency gap
 - Weakly damped
 - $f_{TAE} \sim v_A / (2qR)$

C. Z. Cheng, Liu Chen and M. S. Chance, Ann. Phys. 161 (1985)

Alfvén Eigenmodes

TAE in JET driven by ICRH accelerated ions

TAE have constant amplitude and fine frequency splitting
 Nonlinear effect

Fast Particle Drive

- Collective instabilities
 - Fast particle gradients act as source of free energy
 - Non-Maxwellian distribution
 - $-\gamma \sim \omega \partial f / \partial E + n \partial f / \partial P_{\phi}$ $\sim \omega \partial f / \partial E n \partial f / \partial \psi$
 - Negative radial gradient \Rightarrow *Drive (n>0)*
 - − Negative energy gradient
 ⇒ *Damping*

HOW CAN WE MODEL NONLINEAR FAST ION DRIVEN INSTABILITIES IN FUSION PLASMAS?

The HAGIS Code

Page 23

Equilibrium Representation

• Straight field line (Boozer) coordinates ψ_p, θ, ζ

 $B = \delta(\psi_p, \theta) \nabla \psi_p + I(\psi_p) \nabla \theta + g(\psi_p) \nabla \zeta,$ $B = \nabla \psi \wedge \nabla \theta - \nabla \psi_p \wedge \nabla \zeta,$

 $\Rightarrow \mathbf{A} = \psi \nabla \theta - \psi_p \nabla \zeta.$

Evolution of Energetic Particles

Exact particle Lagrangian, $\mathcal{L}_{exact} = \sum_{ep} \frac{1}{2}mV^2 + eV \cdot \mathbf{A} - e\phi$ is gyro-averaged and written in the form,

$$\mathcal{L}_{ep} = \sum_{j=1}^{n_p} P_{\theta j} \dot{\theta}_j + P_{\zeta j} \dot{\zeta}_j - \mathcal{H}_j$$

with

$$\mathcal{H}_{j} = \frac{1}{2} m_{j} v_{\parallel j}^{2} + \mu_{j} B_{j} + e_{j} \phi_{j}$$
Guiding centre
trajectory

leading to $4 \times n_p$ equations Particle trajectory $\vec{x} \times \vec{X}$ Magnetic field line

Equations of Motion

Derived from total system Hamiltonian for each particle:

$$\begin{split} \dot{\theta} &= \frac{1}{D} \left[\rho_{\parallel} B^{2} (1 - \rho_{c} g' - g \tilde{\alpha}') + g \left\{ (\rho_{\parallel}^{2} B + \mu) B' + \tilde{\Phi}' \right\} \right], \\ \dot{\zeta} &= \frac{1}{D} \left[\rho_{\parallel} B^{2} (\rho_{c} I' + q + I \tilde{\alpha}') - I \left\{ (\rho_{\parallel}^{2} B + \mu) B' + \tilde{\Phi}' \right\} \right], \\ \dot{\psi}_{p} &= \frac{1}{D} \left[\rho_{\parallel} B^{2} \left(g \frac{\partial \tilde{\alpha}}{\partial \theta} - I \frac{\partial \tilde{\alpha}}{\partial \zeta} \right) - \left(g \frac{\partial \tilde{\Phi}}{\partial \theta} - I \frac{\partial \tilde{\Phi}}{\partial \zeta} \right) - g (\rho_{\parallel}^{2} B + \mu) \frac{\partial B}{\partial \theta} \right], \\ \dot{\rho}_{\parallel} &= \frac{1}{D} \left[\left(I \frac{\partial \tilde{\alpha}}{\partial \zeta} - g \frac{\partial \tilde{\alpha}}{\partial \theta} \right) \left\{ (\rho_{\parallel}^{2} B + \mu) B' + \tilde{\Phi}' \right\} - (q + \rho_{c} I' + I \tilde{\alpha}') \frac{\partial \tilde{\Phi}}{\partial \zeta} \right. \\ &+ (\rho_{c} g' - 1 + g \tilde{\alpha}') \left\{ (\rho_{\parallel}^{2} B + \mu) \frac{\partial B}{\partial \theta} + \frac{\partial \tilde{\Phi}}{\partial \theta} \right\} \right] - \frac{\partial \tilde{\alpha}}{\partial t}, \end{split}$$

RB White & MS Chance, Phys. Fluids 27 10 (1984)

Fast Particle Orbits

- ICRH ions in JET deep shear reversal
 - On axis heating[†]:
 - $\Lambda = \mu B_0 / E = 1$
 - E = 500 keV
- Produces predominately potato orbits
- Particle trajectories verified through comparison with other codes and analytic solutions

[†]J. Hedin, PhD Thesis 1999

china eu india japan korea russia usa

Calculation of AE Eigenfunctions

Wave Lagrangian:

$$\mathcal{L}_w = \sum \left[\frac{1}{2} m v^2 + e \left(\mathbf{A} \cdot \mathbf{v} - \phi \right) \right] + \frac{1}{2\mu_0} \int_V \left(\frac{1}{c^2} E^2 - B^2 \right) dx^3$$

Expanding in perturbed field powers:

- $\mathcal{L}^{(0)}$ describes the equilibrium and is solved by, for example, HELENA
- $\mathcal{L}^{(1)}$ describes first order force balance
- £⁽²⁾ describes fixed amplitude Alfvén Eigenmodes and is solved by appropriate linear codes, e.g. CASTOR, MISHKA, PHOENIX, or LIGKA

Wave Evolution

- Linear eigenmode structure is assumed to remain fixed throughout simulations
- Each wave is allowed two degrees of freedom, amplitude and phase-shift; A_k and α_k

$$\tilde{\Phi}_k = A_k(t) \sum_m \tilde{\phi}_{km}(\psi) e^{i(n_k \zeta - m\theta - \omega_k t - \alpha_k(t))}$$

• The wave Lagrangian can then be written as

$$L_w = \sum_{k=1}^{n_w} \frac{E_k}{\omega_k} A_k^2 \dot{\alpha}_k,$$

where

$$E_k = \frac{1}{2\mu_0} \int_V \frac{\left| \boldsymbol{\nabla}_{\perp} \tilde{\boldsymbol{\Phi}}_k \right|^2}{v_A^2} d^3 x,$$

and n_w is the number of eigenmodes in the system

Wave Equations

- Linear eigenstructure assumed invariant
- Introduce slowly varying amplitude and phase:

$$\begin{split} \tilde{\Phi}_{k} &= A_{k}(t) \sum_{m} \tilde{\phi}_{km}(\psi) e^{i(n_{k}\zeta - m\theta - \omega_{k}t - \alpha_{k}(t))} \\ \text{Gives wave equations as:} \\ \dot{\mathcal{X}}_{k} &= \frac{1}{2E_{k}} \sum_{j=1}^{n_{p}} \delta f_{j} \Delta \Gamma_{j}^{(p)} \sum_{m} (k_{\parallel m}v_{\parallel j} - \omega_{k})S_{jkm} + \mathcal{X}_{k}\gamma_{d}, \\ \dot{\mathcal{Y}}_{k} &= -\frac{1}{2E_{k}} \sum_{j=1}^{n_{p}} \delta f_{j} \Delta \Gamma_{j}^{(p)} \sum_{m} (k_{\parallel m}v_{\parallel j} - \omega_{k})C_{jkm} + \mathcal{Y}_{k}\gamma_{d}, \end{split}$$

where

$$\begin{array}{lll} \mathcal{X}_k &\equiv & A_k \cos(\alpha_k), \\ \mathcal{Y}_k &\equiv & A_k \sin(\alpha_k), \end{array} & \begin{array}{lll} C_{jkm} &\equiv & \Re e[\tilde{\phi}_{km}(\psi_j)e^{i\Theta_{jkm}}] \\ & S_{jkm} &\equiv & \Im m[\tilde{\phi}_{km}(\psi_j)e^{i\Theta_{jkm}}] \\ & \Theta_{jkm} &\equiv & n_k\zeta_j - m\theta_j - \omega_k t \end{array}$$

- Represented by a finite number of markers
- Markers represent deviation from initial distribution function so-called δf method
 - Dramatically reduces numerical noise

$$f = \underbrace{f_0(\mathcal{E}, P_{\zeta}; \mu)}_{\text{analytic}} + \underbrace{\delta f(\Gamma^{(p)}, t)}_{\text{markers}}$$
$$\frac{df}{dt} = 0 \Rightarrow \delta f = -\dot{P}_{\zeta} \frac{\partial f_0}{\partial P_{\zeta}} - \dot{\mathcal{E}} \frac{\partial f_0}{\partial \mathcal{E}} - v_{\text{eff}} \delta f$$
$$\int f g \, d\Gamma^{(p)} \longleftrightarrow \int f_0 g \, d\Gamma^{(p)} + \sum_{j=1}^{n_p} \delta n_j g_j$$
where $\delta n_j(t) \equiv \delta f_j(t) \, \Delta \Gamma_j^{(p)}(t)$

Page 31

Marker Loading

• Number of particles represented by a marker:

 $\delta n_j(t) \equiv \delta f_j(t) \,\Delta \Gamma_j^{(p)}(t)$

• Physical volume element associated with a marker:

7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Markers are uniformly loaded using Hammersley's sequence:

$$x_i = \{i/N, \phi_2(i), \phi_3(i), \phi_5(i), \phi_7(i)\}.$$

• If integer *i* is written in base *r*:

$$i = a_0 + a_1 r + a_2 r^2 + \cdots$$

$$\phi_r(i) = a_0 r^{-1} + a_1 r^{-2} + a_2 r^{-3} + \cdots$$

Projections of uniformly loaded 5-D hypercube

- This achieves a discrepancy $\propto 1/N$, where a random distribution has a discrepancy $\propto 1/\sqrt{N}$.

196

(1960), 84{90 and

Example of Linear Growth and Saturation of a TAE

S. D. Pinches *et al.*, Comput. Phys. Commun. **111** (1998)

Linear Growthrate

china eu india japan korea russia usa 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

ter

Fast Ion Redistribution due to TAE

Multiple KTAE in JET

10

10

10

°8/88

• Multiple KTAE (n = 5 - 9) in JET interacting through the driving alpha particle distribution

china eu india japan korea russia usa 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

INCLUDING DISSIPATION

Nonlinear Theory and Dissipative Effects

- When modes are near marginal stability then there are various competing effects
 - Drive from fast ions, $\gamma_{\rm L}$
 - Damping from background plasma, γ_D
 - Reconstitution of profiles, ν_{eff}

$$|\gamma_{\rm L} - \gamma_{\rm D}| \sim v_{\rm eff} << \gamma_{\rm L}, \gamma_{\rm D}$$

Nonlinear Theory

- Nonlinear cubic equation describes Alfvén eigenmodes near threshold
 - -v is the collision frequency for fast particles

$$\frac{dA}{d\tau} = A(\tau) - \frac{1}{2} \int_0^{\tau/2} dz \, z^2 A(\tau - z)$$

china eu india japan korea russia usa

$$\times \int_0^{\tau-2z} dx \, \exp[-\hat{\nu}(2z + x)]$$

$$\times A(\tau - z - x)A(\tau - 2z - x)$$

H.L. Berk, B. N. Breizman & M. Pekker. Phys. Rev. Lett. 76 (1996)

Closer look at TAE...

- Resonant particles relax through collisions
- Single mode undergoes pitchfork splitting
 - Used to determine γ and ν

Frequency Sweeping

- Occurs when mode is close to marginality
 - Damping balancing drive
- Structures form in fast particle distribution function
 - Holes and clumps
- These support long-lived nonlinear BGK waves
- Background dissipation is balanced by frequency sweeping

[H.L. Berk, B.N. Breizman & N.V. Petviashvili, Phys. Lett. A 234 213 (1997), Errata Phys. Lett. A 238 408 (1998)]

Experimental Observations

• Frequency sweeping in MAST #5568

JET Observations

Page 44

Using Theory for Diagnostic Purposes

Trapping frequency is related to TAE amplitude

$$\omega_{b,l}(t) \propto |\delta B|^{1/2}$$

Frequency sweep is related to trapping frequency

$$\delta\omega\propto\omega_b^{3/2}t^{1/2}$$

• Amplitude related to frequency sweep [Berk, Breizman & Petviashvili, Phys. Lett. A 234 213 (1997)]

$$\frac{\delta B}{B} = \frac{1}{C_1^2} \left(\frac{\delta \omega^2}{C_2^2 t} \right)^{2/3}$$

© 2014, ITER Organization

Analytic estimates give correct order of magnitude. Numerical simulation required for more accurate estimate.

[H.L. Berk, B. N. Breizman & M. Pekker. *Phys. Rev. Lett.* **76** (1996)] [S D Pinches *et al., Plasma Phys. Control. Fusion* **46** S47-S57 (2004)]

Validation of Nonlinear Modelling

- Use experimentally observed rate of frequency sweeping to determine wave amplitude and compare with independent measurements
 - In general, numerical modelling is needed to establish the form factor that relates $\delta\omega$ and δB
 - Verify HAGIS for model case
 - Employ HAGIS to establish δB in general case
 - General geometry (including tight-aspect ratio)
 - Mode structure: global mode analysis

Recall *n* = 3 TAE example

china eu india japan korea russia usa 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

n er

...with additional damping

Frequency Sweeping

Fourier spectrum of evolving mode

7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

MAST #5568

- Obtain factor relating ω_{b} and δB

Particle Trapping in MAST

- Particles trapped in TAE wave
 - All particles have same
 - $H' = E ω/n P_{\zeta}$ = 20 keV ···
 - TAE amplitude: $\delta B/B = 10^{-3}$

Scaling of Nonlinear Bounce Frequency

TAE Amplitude in MAST

Consider again our n = 3 TAE case

ter china eu india japan korea russia usa

7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

IDM UID: PVLZH2

Effect of damping

HAGIS Code: Fast Particle Drag

• Introducing drag into the kinetic equation:

$$\dot{f} = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = \underbrace{\nu_{\text{ei}} \frac{\partial}{\partial \mathbf{v}} (\mathbf{v}f)}_{\text{Drag term, C}} + \mathbf{S}$$

 Manifests itself through a change in the characteristics of the kinetic equation (marker trajectories)

Page 56

source

HAGIS Code: Fast Particle Drag

 Including drag necessitates the inclusion of a fast ion source to maintain initial steady-state conditions

Perturbation to distribution moves through phase space affecting gradients and stability

Super-Alfvénic ion source and effect of drag

^{7&}lt;sup>th</sup> ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Effect of (Krook) relaxation

 If v_{eff} is ~1% of γ_L then frequency sweeping structures are destroyed after ~100 γ_Lt

 Increasing Krook relaxation to 10% almost completely eradicates any mode sweeping

Page 60

Nonlinear Behaviour: Drag + Krook

• $n_{\rm p} = 262,500, \, \gamma_{\rm L}/\omega_0 = 6.12\%, \, \gamma_{\rm d}/\omega_0 = 6\%, \, \nu_{\rm ei}/\omega_0 = 0.3\%, \, \nu_{\rm eff}/\omega_0 = 1\%$

• Asymmetric, repetitive, frequency sweeps: $\delta\omega/\omega_0 \sim \pm 30\%$

Fast Ion Redistribution: Drag + Krook

- Changes to fast ion distribution due to nonlinear self-consistent wave-particle interaction:
 - Extensive and sustained redistribution

• $n_{\rm p} = 262,500, \, \gamma_{\rm L}/\omega_0 = 6.12\%, \, \gamma_{\rm d}/\omega_0 = 6\%, \, \nu_{\rm ei}/\omega_0 = 0.3\%, \, \nu_{\rm eff}/\omega_0 = 1\%$

FISHBONES

Fast Particle Losses in JET

NBI heating

$$- V_b \sim V_A$$

 10% drop in neutron yield due to 'fishbones'

D.N. Borba et al., Nucl. Fusion 40 (2000)

Fishbone Instability

- Frequency sweeping mode driven by fast particles
- Consistent MHD/kinetic description being developed

A. Ödblom et al., Phys. Plasmas 9 (2002) 155

Modelling Fishbones in ASDEX Upgrade

china eu india japan korea russia usa

7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Fishbone Evolution

ter china eu india japan korea russia usa

Fishbone Simulation

iter china eu india japan korea russia usa

Current Carrying Ion

- Trapped ion at q = 1 surface
- Energy, E = 55 keV
- Precession frequency, $\omega_{\phi} = 7 \text{ kHz}$
- Bounce frequency, $\omega_{b} = 41 \text{ kHz}$

Spatial redistribution due to fishbones

· Fast ions radially expelled towards low field side

Pitch Angle Redistribution

Change in trapped/passing fast ion distribution

Fast Ion Radial Current

 δf simulation with HAGIS code gives <J^Ψ(t)> and variation of fast ion distribution function

FAST ION LOSSES DUE TO TORNADO MODES IN JET

Tornado modes in JET

Every "monster" sawtooth crash preceded by tornado modes

© 2014, ITER Organization 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Observations of Fast Ion Losses in JET

Loss measurements increase during tornado mode activity

TAE Mode Structure

ter china eu india japan korea russia usa

© 2014, ITER Organization 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

IDM UID: PVLZH2

Page 76

Fast Ion Properties

• Determine natural particle frequencies, ω_{ω} and ω_{θ}

Resonant ICRH ions

Resonance condition:

- $\Omega_{np} = n \omega_{\phi} p \omega_{\theta} \omega = 0$ n = 3 tornado mode:
- $p = -1 \rightarrow 2$
- *f* = 283 kHz

© 2014, ITER Organization 7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014

Resonance Overlap

Overlap between resonances explains observed loss

Summary

- Physics of fast ion driven instabilities well understood
- Fast particles drive instabilities and are in turn re-distributed and, in some cases, lost
 - Consistent *nonlinear* story emerging
- Nonlinear modelling of fast ion driven instabilities
 - Multiple modes interacting through driving fast ion distribution
 - Determination of amplitude of frequency sweeping modes in MAST
 - Radial fast ion current due to fishbones in ASDEX Upgrade
 - Fast ion losses due to tornado modes in JET
- Models start to successfully describe rich nonlinear phenomena near marginal stability
 - Mode saturation, pitchfork splitting and frequency sweeping
- Fast particle driven modes remain a valuable diagnostic tool
 - MHD spectroscopy ($q_{min}(t)$ from Alfvén cascades)